Measuring phylogenetic diversity within communities

The main goal of this tutorial is to present basic understanding about measuring phylogenetic diversity within communities or best known as the analysis of community phylogenetics. The community phylogenetics integrates ecological and evolutionary concepts and explores the mechanisms (e.g., biotic interactions or environmental filters) governing the assembly of ecological communities.

There are different sources of information and web pages with a lot of information about this field. The most common and useful are the web pages of the books: Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology and Phylogenies in Ecology. Among the most influential papers in this field are Phylogenies and Community Ecology by Campbell Webb et al. (2002) and The merging of community ecology and phylogenetic biology by Jeannine Cavender-Bares et al. (2009).

Phylogenetic structure

Using hyperspectral remote sensing data to predict biodiversity

In this tutorial we will explore some aspects of hyperspectral remote sensing obtained from the National Ecological Observatory Network (NEON) with the goal of predicting biodiversity from the sky. Specifically, we will use hyperspectral remote sensing data from the NEON Airborne Observation Platform (AOP) (more information here and here). As you will see, working with hyperspectral information/data is similar to work with any other information/data (e.g., species abundance, presence-absence) and consequently it can be used to calculate any metric of biodiversity. In this sense, spectral diversity can be considered as a dimension of biodiversity.

Note. Part of the text used in this tutorial was extracted from here with some modifications.

Managing hyperspectral data